Name

Find meter DUE \qquad Data DUE \qquad Lab DUE \qquad
If you live in an apartment or don't have access to your electric meter, you will need to work with another student!

Whose house are you at? Student Name: \qquad This activity will cost you less than \$0.50. Thank you! Mrs. B.

How to read your Electric Box:
(grey box on outside of house)
Analog electric meter:
Digital Electric Meter

\qquad

1. What is the K_{h} value from your electric meter? (usually 1 or 7.2)
2. The K_{n} value is equal to the work done in watt hours during the time it takes to spin around 1 time.
3. If your Kh value was 3.6 , how much work was done during the time it took to spin around one time?
4. Let's say that your electric meter has a K_{n} reading of 2 and it takes the disk 28 seconds to spin once. How much power did you use?
5. What would it cost you if those appliances were running for 24 hours?
\qquad Hour \qquad
My Kh value is \qquad

$$
\mathbf{P}=\mathbf{W} / \Delta t
$$

Part 1-Cost of running one appliance-

$$
P=I \Delta V
$$

1. Find 1 appliance (not a lightbulb) and find the Wattage:

Watts \qquad $=$ \qquad kilowatt \quad Voltage $=120 \mathrm{~V}$
2. Solve for how much current this appliance is using.
3. Time of operation for this appliance in a typical day: \qquad min= \qquad hr
4. Cost per kWh (from your electric bill) \qquad $\$ 0.101$ \qquad
5. Calculate the total cost to run this appliance for the time indicated in \#3. Show your work!

Part 2- Calculate the power being used in your house at a given time.
A) With as few appliances running as possible- Turn OFF EVERYTHING1
6. How long does it takes for the disk to spin around once? (Digital- time for 1 arrow to change to another)
$\sec =$ \qquad hr
7. K_{h} reading \qquad THIS IS YOUR WORK
8. Calculate the power being used in your house with only a few things running. (The $\mathrm{K}_{\mathrm{h}}=$ work in Watt• hr, time needs to be in hours too)
$P=W / \Delta t$
B) With as many appliances running as possible- Turn ON EVERYTHING1
9. How long does it take for the disk to spin around once? (Digital- time for 1 arrow to change to another)
\qquad sec. $=$ \qquad hr.
10. Kh reading \qquad THIS IS STILL YOUR WORK
11. Calculate the power being used in your house with lots of appliances running.
$P=W / \Delta t$
12. If you had all the appliances running at the power in \#11 for 10 min , calculate the total cost of running that part of the lab.
13. Calculate how much it would cost to have all of those appliances running for 24 hours a day for 30 straight days.

